297 | 0 | 24 |
下载次数 | 被引频次 | 阅读次数 |
基于裸大麦、普通大麦和野生大麦叶绿体基因组编码序列,分析其密码子使用偏好及差异.结果显示,3者不同窗口大小的胞嘧啶和鸟嘌呤(GC)含量在密码子不同位点(GC1、GC2、GC3)呈梯度递减趋势(46.74%/46.80%/46.63%、39.47%/39.43%/39.43%、29.80%/29.75%/30.25%),且均存在31个高偏好密码子(RSCU>1),其中29个以A/U结尾,呈现显著NNA/NNU结尾偏好.叶绿体基因组有效密码子数(ENC)值(47.14、47.02、47.75)及ENC>45的基因占比(39、39、42个)表明整体密码子偏好性较弱.中性绘图、ENC-plot和PR2-plot分析证实自然选择是密码子偏好形成的主要驱动力.栽培大麦(裸大麦与普通大麦)在GC组成、ENC分布及最优密码子(含特有GCA/AGA)上高度趋同,提示人工驯化通过纯化选择强化了有益性状的遗传稳定性,为解析大麦驯化分子机制提供了新视角.
Abstract:The codon usage preferences and differences among cultivated and wild barley, Hordeum vulgare var.Coleste, H. vulgare ssp. vulgare and H. vulgare ssp. spontaneum, were analyzed based on the coding sequences of their chloroplast genomes. The results demonstrated that the cytosine and guanine(GC) content at different codon positions(GC1, GC2, GC3) exhibited a gradient decrease across the three species(46. 74%/46. 80%/46. 63%, 39. 47%/39. 43%/39. 43%, 29. 80%/29. 75%/30. 25%). All three species shared 31 highly preferred codons(RSCU > 1), with 29 of these codons ending in A/U, indicating a significant preference for NNA/NNU endings.The effective codon number(ENC) values of the chloroplast genomes(47. 14, 47. 02, 47. 75) and the proportion of genes with ENC > 45(39, 39, 42) suggested a relatively weak overall codon preference. Neutral plotting, ENC-plot, and PR2-plot analyses confirmed that natural selection was the primary driving force behind the formation of codon preferences. Furthermore, two cultivated barley exhibited high convergence in terms of GC composition, ENC distribution, and optimal codons(including specific GCA/AGA). This suggests that artificial selection through purifying selection has enhanced the genetic stability of beneficial traits, offering new insights into the molecular mechanisms underlying barley domestication.
[1]刘蕊,王贝,郭朋,等.木犀科叶绿体基因组比较及DNA条形码分析[J/OL].分子植物育种,2023[2023-05-05]. http://kns. cnki. net/kcms/detail/46. 1068. s. 20230504. 2241. 020. html.
[2]于一凡,欧阳臻,郭娟,等.植物质体基因工程调控元件研究进展[J].遗传,2023,45(6):501-513.
[3]王晓娟,董文攀,周世良.基于叶绿体基因组分析我国苜蓿属植物演化路径[J].生态学报,2022,42(15):6125-6136.
[4]梁皓辉.富油新绿藻叶绿体基因组测序及几种产油微绿藻叶绿体基因比较研究[D].广州:广东海洋大学食品科技学院,2021:6-9.
[5]ZHOU Z, DANG Y, ZHOU M, et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription[J]. Proceedings of the National Academy of Sciences, 2016,113(41):6117-6125.
[6]赵春丽,彭丽云,王晓,等.苋菜AtGAI基因密码子偏好性与进化分析[J].中国农业大学学报,2019,24(12):10-22.
[7]BAEZA M, ALCAíNO J, BARAHONA S, et al. Codon usage and codon context bias in Xanthophyllomyces dendrorhous[J].BMC Genomics, 2015,16(1):293.
[8]ROMERO H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces[J]. Nucleic Acids Research, 2000,28(10):2084-2090.
[9]PARK I, SONG J H, YANG S, et al. Comparative analysis of Actaea chloroplast genomes and molecular marker development for the identification of authentic cimicifugae rhizoma[J]. Plants, 2020,9(2):157.
[10]ZHENG G, WEI L, MA L, et al. Comparative analyses of chloroplast genomes from 13 Lagerstroemia(Lythraceae)species:identification of highly divergent regions and inference of phylogenetic relationships[J]. Plant Molecular Biology, 2020,102(6):659-676.
[11]闫松显.不同来源一年生野生大麦与栽培大麦的遗传多样性以及染色体组差异分析[D].武汉:华中农业大学植物科学技术学院,2015:1-18.
[12]向思琪,羊海珍,旺姆.青稞种质资源对大麦黄矮病毒的抗性鉴定和生理分析[J].植物遗传资源学报,2023,24(4):1007-1015.
[13]丁双鲲,杜恺,袁增慧,等.赖氨酸对青稞面包品质及风味特征的影响[J].食品与发酵工业,2023,49(7):256-263.
[14]夏虎,晏熙玥,卢利聃,等.青稞的营养功能及其高值化利用研究进展[J].食品工业科技,2022,43(20):403-413.
[15]李江飞,李熙颜,王瑜,等.滇楸叶绿体基因组密码子偏好性分析[J].基因组学与应用生物学,2022,41(4):843-853.
[16]SUEOKA N. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position[J]. Gene, 1999,238(1):53-58.
[17]WRIGHT F. The′effective number of codons′used in a gene[J]. Gene, 1990, 87(1):23-29.
[18]原晓龙,李云琴,张劲峰,等.降香黄檀叶绿体基因组密码子偏好性分析[J].广西植物,2021,41(4):622-630.
[19]CHAKRABORTY S, YENGKHOM S, UDDIN A. Analysis of codon usage bias of chloroplast genes in Oryza species[J].Planta, 2020,252(4):67.
[20]TIAN G, LI G, LIU Y, et al. Polyploidization is accompanied by synonymous codon usage bias in the chloroplast genomes of both cotton and wheat[J]. PLOS One, 2020,15(11):e0242624.
[21]李江飞,李亚麒,唐军荣,等.高山松叶绿体基因组密码子偏好性模式[J].生物学杂志,2023,40(1):52-59.
[22]李江飞,王瑜,颜廷雨,等.云南油杉叶绿体基因组密码子偏好性分析[J].中南林业科技大学学报,2022,42(4):30-39.
[23]CAMPBELL W H, GOWRI G. Codon usage in higher plants, green algae, and cyanobacteria[J]. Plant Physiology, 1990,92(1):1-11.
[24]QI Y, XU W, XING T, et al. Synonymous codon usage bias in the plastid genome is unrelated to gene structure and shows evolutionary heterogeneity[J]. Evolutionary Bioinformatics, 2015,11:65-77.
[25]王文斌,于欢,邱相坡.黄芩叶绿体基因组重复序列及密码子偏好性分析[J].分子植物育种,2018,16(8):2445-2452.
[26]王宇飞,江媛,杨成金,等.滇重楼叶绿体基因组特征及密码子偏好性分析[J].分子植物育种,2021,19(22):7448-7458.
[27]耿晓姗,贾魏,陈佳宁,等.金花茶叶绿体基因组密码子偏好性分析[J].分子植物育种,2022,20(7):2196-2203.
[28]HERSHBERG R, PETROV D A. Selection on codon bias[J]. Annual Review of Genetics, 2008,42(1):287-299.
基本信息:
DOI:
中图分类号:S512.3
引用信息:
[1]谢刘义,任璇,应文博等.栽培大麦和野生大麦叶绿体基因组密码子偏好性比较分析[J].云南民族大学学报(自然科学版),2025,34(03):268-276.
基金信息:
云南省高层次人才培养支持计划项目(YNWR-QNBJ-2020-287); 国家中医药管理局全国中药资源普查项目(GZY-KJS-2018-004)